// OpenVPN -- An application to securely tunnel IP networks
// over a single port, with support for SSL/TLS-based
// session authentication and key exchange,
// packet encryption, packet authentication, and
// packet compression.
//
// Copyright (C) 2012-2017 OpenVPN Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License Version 3
// as published by the Free Software Foundation.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program in the COPYING file.
// If not, see .
// API for random number implementations.
#ifndef OPENVPN_MBEDTLS_UTIL_RANDAPI_H
#define OPENVPN_MBEDTLS_UTIL_RANDAPI_H
#include
#include
#include
#include
#include
#include
namespace openvpn {
class RandomAPI : public RC
{
public:
typedef RCPtr Ptr;
// Random algorithm name
virtual std::string name() const = 0;
// Return true if algorithm is crypto-strength
virtual bool is_crypto() const = 0;
// Fill buffer with random bytes
virtual void rand_bytes(unsigned char *buf, size_t size) = 0;
// Like rand_bytes, but don't throw exception.
// Return true on successs, false on fail.
virtual bool rand_bytes_noexcept(unsigned char *buf, size_t size) = 0;
// Fill a data object with random bits
template
void rand_fill(T& obj)
{
rand_bytes(reinterpret_cast(&obj), sizeof(T));
}
// Return a data object with random bits
template
T rand_get()
{
T ret;
rand_fill(ret);
return ret;
}
// Return a data object with random bits, always >= 0 for signed types
template
T rand_get_positive()
{
T ret = rand_get();
if (ret < 0)
ret = -ret;
return ret;
}
// Return a uniformly distributed random number in the range [0, end).
// end must be > 0.
template
T randrange(const T end)
{
return rand_get_positive() % end;
}
// Return a uniformly distributed random number in the range [start, end].
template
T randrange(const T start, const T end)
{
if (start >= end)
return start;
else
return start + rand_get_positive() % (end - start + 1);
}
// Return a uniformly distributed random number in the range [0, end).
// This version is strictly 32-bit only and optimizes by avoiding
// integer division.
std::uint32_t randrange32(const std::uint32_t end)
{
std::uint32_t r;
rand_fill(r);
return rand32_distribute(r, end);
}
// Return a uniformly distributed random number in the range [start, end].
// This version is strictly 32-bit only and optimizes by avoiding
// integer division.
std::uint32_t randrange32(const std::uint32_t start, const std::uint32_t end)
{
if (start >= end)
return start;
else
return start + randrange32(end - start + 1);
}
// Return a random byte
std::uint8_t randbyte()
{
std::uint8_t byte;
rand_fill(byte);
return byte;
}
// Return a random boolean
bool randbool()
{
return bool(randbyte() & 1);
}
// Throw an exception if algorithm is not crypto-strength.
// Be sure to always call this method before using an rng
// for crypto purposes.
void assert_crypto() const
{
if (!is_crypto())
throw Exception("RandomAPI: " + name() + " algorithm is not crypto-strength");
}
// UniformRandomBitGenerator for std::shuffle
typedef unsigned int result_type;
static constexpr result_type min() { return result_type(0); }
static constexpr result_type max() { return ~result_type(0); }
result_type operator()() { return rand_get(); }
};
}
#endif